4.1 Antiderivatives and Indefinite Integration

OBJECTIVES:

1. Write the general solution of a differential equation.

2. Use indefinite integral notation for antiderivatives.

3. Use basic integration rules to find antiderivatives.

4. Find a particular solution of a differential equation.

WRITE THE GENERAL SOLUTION OF A DIFFERENTIAL EQUATION

Definition:  A function F is an antiderivative of  f  if 
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  What are some possible antiderivatives of 
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Notation for Antiderivatives:  We know that 
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 can be written in differential form:



Finding all solutions to this differential equation is called ANTIDIFFERENTIATION or



INDEFINITE INTEGRATION.
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Integrate both sides
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BASIC INTEGRATION RULES
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USE BASIC RULES TO FIND THE GENERAL SOLUTION OF A DIFFERENTIAL EQUATION

The general solution of a differential equation represents a “family” of curves.  The members of the family differ only by a constant.  Remember that this constant causes a vertical shift in the curves.

Find a general solution for the following.  REMEMBER:  You must have “+ C” to make each antiderivative a family of curves!
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USE AN INITIAL CONDITION TO FIND A PARTICULAR SOLUTION OF A DIFF. EQUATION

We use an INITIAL CONDITION to solve for the constant of integration (+ C).  As a result, we’re able to find one member of the “family” of curves.
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, find a particular solution to the differential equation.

    10.  If 
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